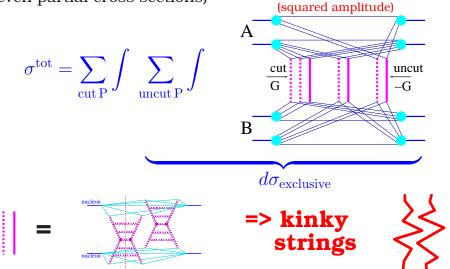

System size dependence of particle production in EPOS and some remarks about low energies

Klaus Werner

in collaboration with T. Pierog, Y. Karpenko, B. Guiot, G. Sophys, M. Stefaniak

EPOS = Gribov-Regge approach

S-Matrix based on Pomerons

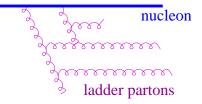

Pomerons : Parton ladders (initial and final state radiation, DGLAP)

Cutting rules to get inelastic cross sections.

Same principle for pp, pA, AA

Explicite formulas for cross sections

(even partial cross sections)



Computing the expressions G for single Pomerons: A cutoff Q_0 is needed (for the DGLAP integrals).

Taking Q_0 constant leads to a power law increase of cross sections vs energy (=> wrong)

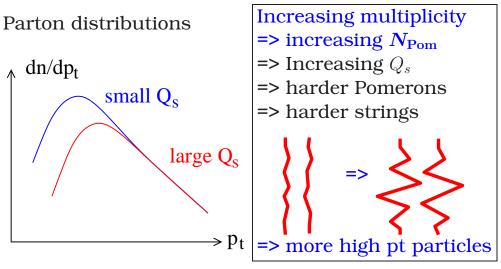
because non-linear effects like gluon fusion are not taken into account

Solution: Instead of a constant Q_0 , use a dynamical saturation scale for each Pomeron:

$$oldsymbol{Q}_s = oldsymbol{Q}_s(oldsymbol{N_{I\!P}}, oldsymbol{s_{I\!P}})$$

with

 □ N_{IP} = number of Pomerons connected to a given Pomeron (whose probability distr. depends on Q_s)
 □ s_{IP} = energy of considered Pomeron We get $Q_s(N_{\mathbb{P}}, s_{\mathbb{P}})$ from fitting


- \Box the energy dependence of elementary quantities ($\sigma_{\rm tot}$, $\sigma_{\rm el}$, $\sigma_{\rm SD}$, $dn^{\rm ch}/d\eta(0)$) for pp
- \Box the multiplicity dependence of dn^{π}/dp_t at large p_t for pp at 7 TeV

We find

$$Q_s \propto \sqrt{N_{
m I\!P}}~ imes~(s_{
m I\!P})^{0.30}$$

CGC for AA:

 $Q_s \propto N_{\rm part} \, \times \, (1/x)^{0.30}$

=> Strong increase of $\langle p_t \rangle$ with multiplicity

and gives a strong nonlinear increase of D or J/Psi multiplicity vs charged multiplicity in pp and pPb \ldots

Core-corona picture in EPOS

central AA

Gribov-Regge approach => (Many) kinky strings => core/corona separation (based on string segments)

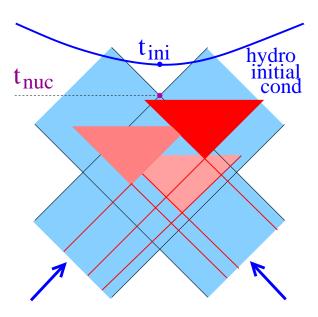
peripheral AA high mult pp,pA

low mult pp

core => hydro => flow + statistical decay
corona => string decay

EPOS status and perspective:

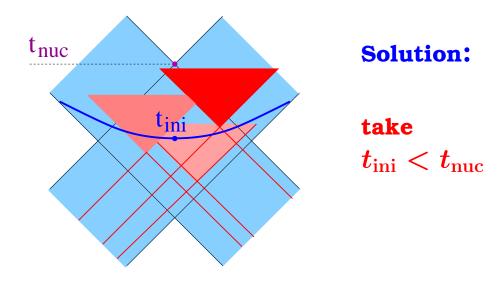
Status 2015: Two parallel developments


EPOS LHC: Gribov Regge approach, parameterized flow as in EPOS1.99, tuned to LHC data (2012), very much used (and tested) by LHC pp groups, UE, forward physics etc, and used for air shower simulations

EPOS 3.0xx: Gribov Regge approach, viscous hydro, parton saturation, mainly used for HI and collectivity in pp

2015/2016/2017: "Fusion", to accommodate basic pp and HI features, <u>public version</u>; Currently: EPOS3.2xx (beta version)

What about EPOS at low energies?


Space time picture of a HI collision

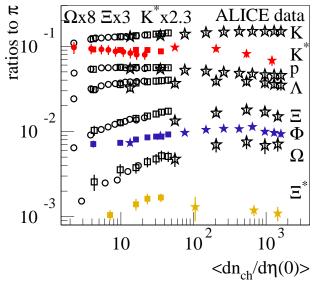
longitudinal dimension of each nucleus: $2R/\gamma$

$$t_{
m nuc} = R/\gamma v$$
big at low E

too little core, too little flow for $t_{
m ini} > t_{
m nuc}$

Back to LHC:

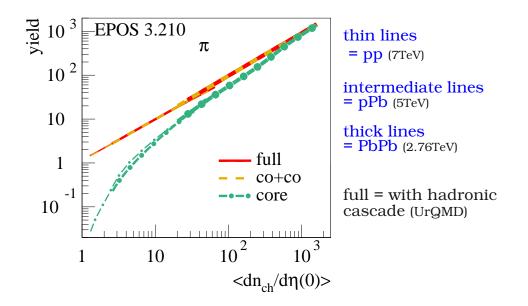
Testing EPOS 3.210


To get a global overview:

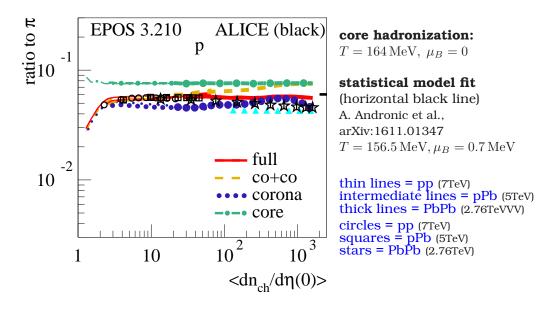
Chemistry: Particle ratios vs $\left\langle \frac{dn_{ch}}{dn}(0) \right\rangle$ for pp, pPb, PbPb

Flow: Average transverse momenta vs $\left\langle \frac{dn_{ch}}{dn}(0) \right\rangle$ for pp, pPb, PbPb

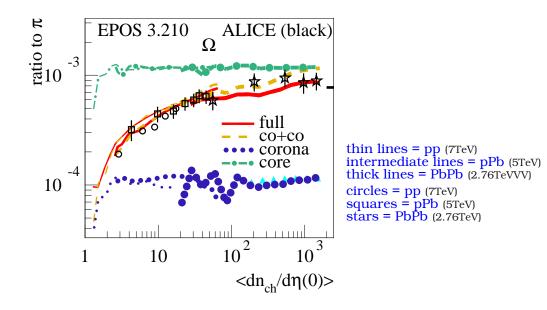
 $\left\langle \frac{dn_{\rm ch}}{dn}(0) \right\rangle$ for multiplicity classes defined via forw multiplicities

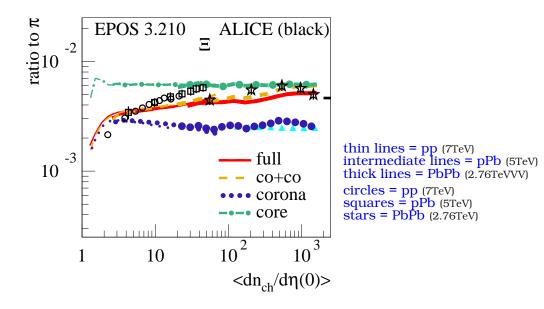

circles = pp (7TeV)

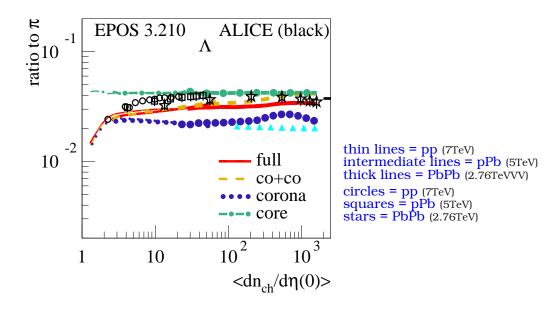
squares = pPb (5TeV) stars = PbPb (2.76TeV)

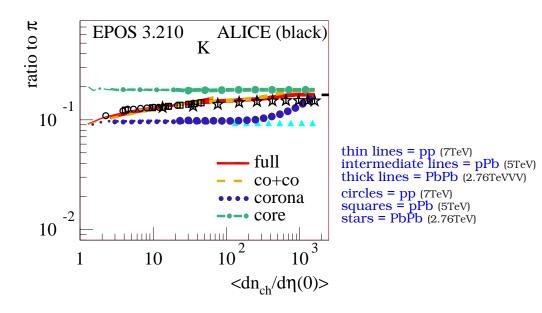

ALICE data references (collected by A. G. Knospe)

<dwch/deta> in Pb+Pb: Phys. Rev. Lett. 106 032301 (2011) pi+-, K+-, p+- in Pb+Pb: Phys. Rev. C 88 044910 (2013) Lambda in Pb+Pb: Phys. Rev. Lett. 111 222301 (2013) XI- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016) pi+-, K+-, p+-, A in p+Pb: Phys. Lett. B 728 25-38 (2014) <dNch/deta> in p+Pb: Eur. Phys. J. C 76 245 (2016) XI- and Omega in p+Pb: Phys. Lett. B 758 389-401 (2016) <dNch/deta> p+p 7 7tv: Eur. Phys. J. C 68 345-354 (2010) pi+-, K+-, p+- in p+p 7 TeV: Phys. Lett. B 712 309 (2012) and pp data points from Rafael Derradi de Souza, SQM2016


Pion yields: core / corona contribution

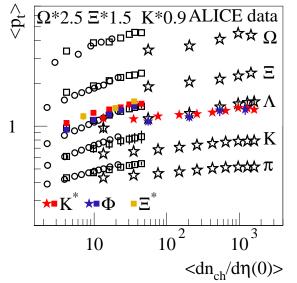

Proton to pion ratio


Omega to pion ratio


Xi to pion ratio

Lambda to pion ratio

Kaon to pion ratio

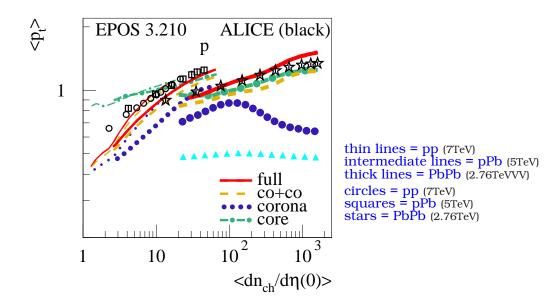

Ratios
$$h/\pi$$
 for $h=p,K,\Lambda,\Xi,\Omega$ vs $\left<rac{dn}{d\eta}(0)
ight>$:

Core and corona contributions separately roughly constant

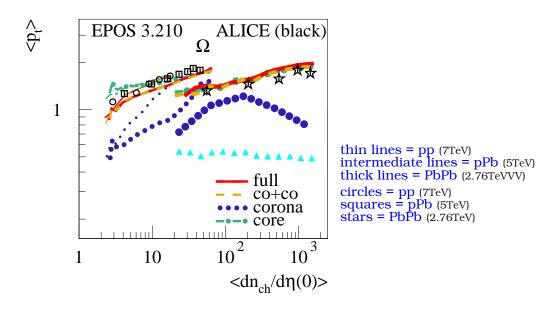
Difference (core - corona) increasing for $p \to K, \Lambda \to \Xi \to \Omega$

=> inceasing slope

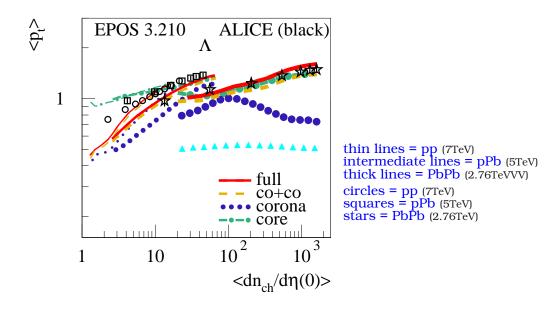
Mean
$$p_t$$
 vs $\left< rac{dn_{
m ch}}{d\eta}(0) \right>$

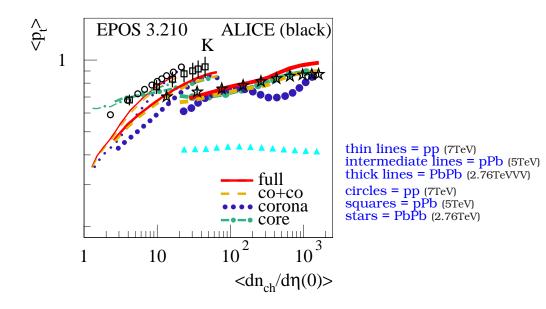


circles = pp (7TeV)


squares = pPb (5TeV)

stars = PbPb (2.76TeV)


Average p_t of protons


Average p_t of Omegas

Average p_t of lambdas

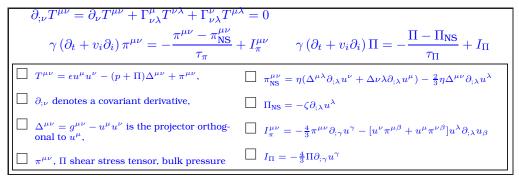
Average p_t of kaons

Average
$$p_t$$
 of $K, p, \Lambda, \Xi, \Omega$ vs $\left< rac{dn}{d\eta} (0) \right>$:

Moderate increase of core contribution (same for pp and pPb, similar to PbPb)

Strong increase of corona contribution (stronger for pp than for pPb, much stronger than for PbPb)

Slope(pp) > slope(pPb) >> slope(PbPb)


K, π : **pp-pPb splitting**

The multiplicity dependence of the corona contribution is crucial

- To understand multiplicity dependence of particle production we have to understand the corona contribution (= non-flow).
- □ The latter one dominates low multiplicity pp, but its relative weight decreases continuously with multiplicity (but is never zero)
- □ Investigating the multiplicity dependence of particle ratios and mean pt in pp, pA, AA: EPOS's core-corona picture describes the trend
- \Box Strong increase of corona pt due to the $N_{
 m Pom}$ dependence of the saturation scale ...

Core => Hydro evolution (Yuri Karpenko)

Israel-Stewart formulation, $\eta - \tau$ coordinates, $\eta/S = 0.08$, $\zeta/S = 0$

Freeze out: at 164 MeV, Cooper-Frye $E\frac{dn}{d^3p} = \int d\Sigma_{\mu}p^{\mu}f(up)$, equilibrium distr

Hadronic afterburner: UrQMD

Marcus Bleicher, Jan Steinheimer